
The Basics of WAI-ARIA

Presenter:
• John

Toles

Center for Inclusive Design &
Innovation

• Center for Inclusive Design &
Innovation (CIDI) provides practical
solutions for challenges faced daily by
individuals with disabilities.

• We focus on solutions that offer utility,
usability, and durability.

• CIDI offers services including
disability compliance consultation,
braille, captioning, audio description,
accessibility evaluation of digital
content, training and technical
assistance.

Find more information at cidi.gatech.edu
(https://cidi.gatech.edu)

https://cidi.gatech.edu/

Presenter Bio

I started with CIDI in 2016 providing
support for a research study. Since
then I have expanded my role to
include development for the Student
Accommodation Manager application
and providing web accessibility
evaluations for the Web Access
team, as well as QuickBase and
Drupal development for various other
projects.

John Toles
Assistive Technology
Support Specialist

Basics of ARIA

What is ARIA?

From The W3C (World Wide Web Consortium):
Web Accessibility Initiative’s Accessible Rich
Internet Applications (ARIA) Suite, defines a way to
make Web content and Web applications more
accessible to people with disabilities. It especially
helps with dynamic content and advanced user
interface controls developed with Ajax, HTML,
JavaScript, and related technologies.*

*w3.org/WAI/standards-guidelines/aria/

WAI-ARIA and ARIA are synonymous, but it’s most
often referred to simply as ARIA.

Basics of ARIA

WAI-ARIA 1.1 Specifications
(https://www.w3.org/TR/wai-aria-1.1)

The ARIA specification consists of roles and states and
properties.

• Roles provide information about the purpose
of an element (“menu”, “treeitem”, “slider”, and
“progressmeter”)

• States and properties indicate the condition of
an element and whether or not it has changed
("checked" or "haspopup")

Put simply, roles describe what a component is or
does. While state and properties describe how it
can be interacted with.

https://www.w3.org/TR/wai-aria-1.1

Basics of ARIA
Roles Simple menu example:

<div role="menu"> <!--the role is on a <div> element-->

 <!--no role has been assigned to the tag-->

<!--roles have been applied to the <a> tags in the list-->

< button role="menuitem" onclick=“function1()">Item 1</button >

< button role="menuitem" onclick=“function2()">Item 2</button >

<button role="menuitem" onclick=“function3()">Item 3</button >

</div>

Basics of ARIA
State and properties Simple navigation menu example:
<div role="navigation">

Home

Contact

<!--the <a> tag on holds the aria describing the popup menu-->

<a aria-haspopup="true“ aria-expanded="false“ href=“#“>Blog

<ul role="menu" aria-label="Blog">

<li role="none"> <!--notice roles are used to override semantic html-->

January 2020

<li role="none">

<a role="menuitem" href="/blog-Feb2020.html“ February 2020

<div>

ARIA Roles
Demonstration

Basics of ARIA

What does ARIA do?
WAI-ARIA addresses accessibility challenges by defining
how information about component functionality to assistive
technology. With WAI-ARIA, an advanced Web application
can be made accessible and usable to people with
disabilities. *w3.org/WAI/standards-guidelines/aria/

...and not do?
ARIA is not a coding method for making things accessible. It is a supplement to HTML. Developers
use it to provide information about the purpose and function of web components not to provide
additional features.
ARIA doesn't do anything on its own. It only tells assistive technology the intention behind a
component; which is then conveyed to the user.
For ARIA to function properly it must be applied to components coded to meet HTML specification.
Applying ARIA to bad code only makes things worse for the user.

Basics of ARIA

When should you use ARIA?
ARIA is useful for identifying custom components and
remediating older code.

Before adding ARIA, however, developers should
consider whether updating code would benefit a
project before attempting to remediate old code.
Developers should also test thoroughly before
changing code to identify areas where it lacks
accessibility and add ARIA to enhance those areas.

... and not use it?
In most cases developers do not need to add ARIA to their code. Modern screen readers
and browsers work together well, and most tags are interpreted correctly. Developers
should rely on semantic HTML wherever possible and implement custom components only
when necessary.

Basics of ARIA

The Principles of ARIA?
The two essential principles of ARIA:
1. A role is a promise -

When an ARIA role is used to identify a component, that component will
behave the same as an equivalent HTML component.

2. ARIA can both block and enhance -
When ARIA is applied correctly it can provide essential information about a
component for assistive technology but applied incorrectly it can also cloak
information about a component.

Unofficial third Principle:
No ARIA is better than Bad ARIA!

Basics of ARIA

How should you use ARIA?
Semantic markup is better for accessibility than including extensive ARIA. In most
cases screen readers interpret HTML and identify components correctly.

The W3C maintains a catalog of tutorials for explaining how to implement ARIA in
common HTML components.

WAI-ARIA Authoring Practices (https://www.w3.org/TR/wai-aria-practices-1.1/)

https://www.w3.org/TR/wai-aria-practices-1.1/

Basics of ARIA
Bad ARIA example:
<ul role="navigation">

nav link 1

nav link 2

In implementing this component using a list but placing the role="navigation" attribute on the tag, the component will be
identified as a navigation region not as a list. The ARIA is overriding the semantic HTML and the user is losing information.

Corrected example:
<nav> <!--notice this example has no ARIA-->

nav link 1

nav link 2

</nav>

Basics of ARIA
ARIA Role and HTML Equivalents:

ARIA HTML

role=“navigation” <nav>

role=“main” <main>

role=“banner” <header>

role=“contentinfo” <footer>

role=“complementary” <aside>

role=“region” <section>*

role=“form” <form>

role=“search” None*

*webpages often contain multiple <section> tags. An aria-label attribute should be applied to identify individual
sections
*there is no HTML tag equivalent to role=“search”. A search bar is a good example of a custom component that
can be enhanced with ARIA.

Basics of ARIA

Final Takeaways:
1. ARIA can help you inform users about accessibility of your web components.
2. ARIA cannot make an inaccessible component accessible.
3. No ARIA is better than bad ARIA.

Resources:
4. W3C Web Accessibility Initiative (https://www.w3.org/WAI/)
5. WAI-ARIA Specification (https://www.w3.org/TR/wai-aria-1.1)
6. WAI-ARIA Authoring Practices (https://www.w3.org/TR/wai-aria-practices-1.1/)

https://www.w3.org/WAI
https://www.w3.org/TR/wai-aria-1.1
https://www.w3.org/TR/wai-aria-practices-1.1/

Questions?

