
Let’s Write Secure Drupal 
Code! 

( Application Vulnerabilities & Fixes)



Shreyal Mandot 
Born and raised in Ratlam, Madhya Pradesh, India 

Bachelor's and Master's from Pune 
Technical Lead (L3) 

@Shreyal999



What are we going to Cover ?

● What is Application Vulnerabilities 
● Lets see The OWASP Top 10 application vulnerabilities 2021. 
● Undestanding the Vulnerabilities. 
● Points where we missed out to check in Drupal. 
● How to fix the Vunlerabilities while writing code in Drupal 8.



What is Application Vulnerabilities ?

“An application vulnerability is a system flaw 
or weakness in an application that could be 
exploited to compromise the security of the 
application…”



What is OWASP ?

“The Open Web Application Security 
Project is an online community that 
produces freely-available articles, 
methodologies, documentation, tools, 
and technologies in the field of web 
application security.…”





OWASP Top Web Application Security Risks

●  Injection. 

●  Broken Authentication and Session Management 

● Insecure Direct Object Reference 

● autocomplete enabled 

● Unprotected Cookie 



OWASP Top 10 Web Application Security Risks

● Insecure deserialization 

● Incorrect Exception Handling 

● cross-origin resource sharing (CORS). 

● Insecure Randomness. 

● Cross-Site Scripting (XSS).



OWASP Top 10 Web Application Security Risks

● Cacheable HTTPS response. 

● Content Security Policy (CSP). 

● Session Timeout. 

● Crawlable Links.



SQL & Header Injection

● SQL Injection : Executing SQL of the attacker. 

● Header Injection : HTTP response header injection vulnerabilities 

arise when user-supplied data is copied into a response header in 

an unsafe way.



SQL Injection

<?php  

$results = db_query(“SELECT uid, name and email from 

{users} WHERE name LIKE ‘%%$user_search%%’”); 

?>



Fixing SQL Injection

● Use Always Use Drupal Database API. 

● Use Placeholders to pass variables to query. 

● Filter Parameters. 

● db_like().



Header Injection

Impact :   An attacker can inject new HTTP headers and 

also, by injecting an empty line, break out of the headers 

into the message body and write arbitrary content into 

the application's response. 



Fixing Header Injection

Added header in nginx add_header Strict-Transport-

Security "max-age=31536000; includeSubDomains" 

always; add_header X-Content-Type-Options "nosniff" 

always; 



Broken Authentication & Session Management 

Broken Authentication allow attackers to compromise 

passwords, keys or session tokens, even going so far as 

to exploit other implementation flaws to assume users’ 

identities temporarily or permanently. 



Fixing Broken Authentication & Session Management 



Unprotected Cookie

Description : When a cookie is set with the HttpOnly 

flag, it instructs the browser that the cookie can only be 

accessed by the server and not by client-side scripts. 



Unprotected Cookie

Impact : If the HttpOnly flag is not set, then sensitive 

information stored in the cookie may be exposed to 

unintended user. Also if the cookie is an authentication 

cookie, then not setting the HttpOnly flag may allow a 

malicious user to steal authentication data (e.g., a 

session ID) and assume the identity of the user. 



Fixing Unprotected Cookie



CROSS ORIGIN RESOURCE SHARING

There are a number of HTTP headers related to CORS, 

but the following three response headers are the most 

important for security : 



CROSS PRIGIN RESOURCE SHARING

Access-Control:  Allow-Origin specifies which 

domains can access a domain’s resources. For instance, 

if requester.com want to access provider.com’s 

resources, then developers can use this header to 

securely grant requester.com access to provider.com’s 

resources. 



CROSS PRIGIN RESOURCE SHARING

Access-Control : Allow-Credentials specifies whether 

or not the browser will send cookies with the request. 

Cookies will only be sent if the Allow-credentials header 

is set to true.



CROSS PRIGIN RESOURCE SHARING

Access-Control : Allow-Methods specifies which HTTP 

request methods (GET, PUT, DELETE, etc.) can be used 

to access resources. This header lets developers further 

enhance security by specifying what methods are valid 

when requester.com requests access to Provider.com’s 

resources.



CROSS SITE SCRIPTING (XSS)

An attacker can use XSS to send a malicious script to an unsuspecting 

user. The end user’s browser has no way to know that the script should 

not be trusted, and will execute the script. Because it thinks the script 

came from a trusted source, the malicious script can access any cookies, 

session tokens, or other sensitive information retained by the browser 

and used with that site. These scripts can even rewrite the content of the 

HTML page. 



Fixing CROSS SITE SCRIPTING (XSS)

● ‘add_header X-XSS-Protection "1; mode=block";’ in  

the nignx file 

● Header set X-XSS-Protection "1; mode=block" 

in .htaccess. For apache.



Cacheable HTTPS response

Browsers can store a local cached copy of content 

received from web servers. Some browsers, including 

Internet Explorer, cache content accessed via HTTPS. If 

sensitive information in application responses is stored 

in the local cache, then this may be retrieved by other 

users who have access to the same computer at a future 

time. 



Fixing Cacheable HTTPS response

Added header add_header Cache-Control "no-store, 

no-cache, must-revalidate post-check=0, pre-check=0"; 

AND also use Javascript to remove the last visited node 

using history function.




